Physics and Machine Learning Based Approaches to Stability

Analysis and Control on DIlI-D

Mechanical

by R. Conlin®?#
and Aerospace

W|th Engineering
J. Abbate’?, K. Erickson?, A. S. Glasser'?, PRINCETON
A. Wu', A. Igtidar’, E. Kolemen'-?

' Princeton University
2 Princeton Plasma Physics Laboratory

Presented remotely at

2020 APS-DPP Meeting D=0
November 11 th, 2020 NATIONAL FUSION FACILITY
Email:

* weonlin@pppl.gov

e Machine Learning to predict/control plasma state

o What should control inputs be to achieve desired state?
e Using machine learning models in real time systems

o How do we get a neural net onto plasma control system (PCS)?
e Physics based models to determine which states are best

o Given a controller, which state should we aim for?

R. Conlin / November 2020 / APS-DPP 2

e Machine Learning to predict/control plasma state

o What should control inputs be to achieve desired state?

R. Conlin / November 2020 / APS-DPP 3

Transport Plasma State

6. Full state of plasma determined
by 1D profiles:
e Pressure (P)

e Current (J)
31 | , e Electron temperature and
density (7, n))
6 e |on temperature and
> 4] density (7, n.)
. e Rotation (Q)
ol . Given state (and actuators), can
ol Oj — we predict how plasma will

evolve on transport timescales
(~100-200ms)?

R. Conlin / November 2020 / APS-DPP 4

Transport is nonlinear - use ML to get linear model

Ti —> f(l‘t Ut) — Tty e Traditional ML*: Learn f, but model
) predictive control with nonlinear model is
T expensive, inefficient.
e Solution: use Linearly Recurrent

=1 Autoencoder Network (LRAN) to learn
h(mt) h (Zt+1) linear embedding of nonlinear dynamics

e Functions h and h™' parameterized by

\ neural networks
<t _FAZt + But —> <t+1 e Learned along with matrices A, B
e Gives linear model for dynamics, so we
* see: can use robust methods for linear optimal
- Abbate, Z004.00006 Data-Driven Profile Prediction, control

- Jalalvand, GP19.00024 Hyper-dimensional time-series data
analysis with reservoir computing networks to predict plasma
profiles in tokamak

R. Conlin / November 2020 / APS-DPP 5

LRAN: high accuracy, easy robust control design

Shot# 158920, t =3050 ms

: N :\
e Model trained on experimental data from ES o4, : : . : .
p
DIlI-D 2013-2018 T sof —y
e After model tuning, can get similar = BN
performance to more advanced models g
2.5 1
e Currently developing finite horizon linear & oo &____/\u
optimal controller for tests on DIII-D ' ' e ' ‘
= 100000 -
: \.\
’n Z 0 T T T P T T —r
_’®-' 41 = AZT T B'U.f > 10 A l, l/
01+ : . . . :
0.0 0.2 0.4 0.6 0.8 1.0
—K | i
- True, time ¢

== True, time ¢ +300ms
- Prediction, time ¢+ 300ms

R. Conlin / November 2020 / APS-DPP 6

e Using machine learning models in real time systems

o How do we get a neural net onto plasma control system (PCS)?

R. Conlin / November 2020 / APS-DPP 7

How to deploy machine learning models for control?

Current method for deploying ML
models based around mobile +
web applications

Generally involve communicating
with process running on remote

server

o Large latency
o Non-deterministic behavior
o Not safe for real-time applications

Other option: recode entire model ﬁ

$3 bucket

by hand

o Time consuming

Client
Input data Inference
(request) (response)

) :
@ Endpoint

Training code image

Ja
on ML compute instances

o Error prone

R. Conlin / November 2020 / APS-DPP

Amazon SageMaker EC2 Container Registry

Keras2c: full automated conversion / code generation

Script/Library for converting Keras neural
nets to C functions

e Designed for simplicity and real time
applications
e Core functionality only ~1500 lines

e Generates self-contained C function,
no external dependencies

e Supports full range of operations &
architectures

e Fully automated conversion &
testing

R. Conlin / November 2020 / APS-DPP 9

Real-time applications: DIlI-D Plasma Control

e Example timing shown for neural net
predicting plasma transport 1700 -

o 30 convolutional layers of varying size é 1680 -

o 2recurrent LSTM layers g

o Dozens of reshaping/padding/merging = 1660 - ” IM Mﬂ HI Mk
operations 8

o Multi-input/multi-output model with = 16407
branching internal structure 2 1620 -

o Total 45,485 parameters 3

e Mean time 1.65 ms* 1600 = T

|| 1 1 1
N 1.5 20 25 30 35 4.0
e Worst case jitter 23 ys, rms 3.75 us . .
Experiment Time (s)

*Also includes time to gather input data from
other processes and pre-processing

R. Conlin / November 2020 / APS-DPP 10

e Physics based models to determine which states are best

o Given a controller, which state should we aim for?

R. Conlin / November 2020 / APS-DPP 11

STRIDE: Real Time 6W Calculations

1

5W:§/dx[Q2+J-s><Q+<£-VP><V-£)+vP(V-£>2}
Q

Solutions’ Order of Magnitude with Interval Subdivision
. OW < 0 — MHD instability |
. Quadratic Lagrangian gives ° ’
Linear Euler-Lagrange 4
equation
. Linear E-L can be domain
decomposed using state
transition matrices

K N

|
XI(,U')) = (L«')X(w) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

: Radial coordinate ¢
®'(¢y) = L(¥)2(¥)
X(¥2) = ®(v2, Y0)X(v0) = P(Y2, ¥1) P (Y1, %0)%(¢0)

Easy parallelization — fast (real time) stability calculations

R. Conlin / November 2020 / APS-DPP 12

Adaptive multistep integration scales poorly with many threads

35000 A
e Previous approach used ZVODE = y=30.7x + 3140.7

(adaptive multistep method) to integrate 30000 A
on each interval

e Adaptive step size takes extra
unnecessary steps in stiff regions

e Multistep method not self starting, needs
extra function evaluations on each
interval.

e Adding more intervals to balance
threads adds 1000s of function
evaluations

e Compute time ~300 ms at best on 72
core CPU 0 200 400 600 800 1000

Intervals

25000 A

20000 A

15000 A

Function Evaluations

10000 A

5000 A

R. Conlin / November 2020 / APS-DPP 13

Extreme parallelization - fixed steps, tuned intervals

Use 1 trapezoidal step per interval with optimized interval
division
Binary reduction to combine solutions in ~Log,(N) time

Know we need to take smaller steps closer to rational
surfaces

o Assume step size h ~ 1/1{. where /A is some measure of

stiffness
Cl,

o Fita function of the form K = Z 1+ B[—]

S

m s = index of singularity,
m vy = location of singularities

m «, f§ = coefficients to optimize

R. Conlin / November 2020 / APS-DPP

3000 -

1000 A

RIL(Y)]

1011 -

109 -

107 -

105 -

rr’

0.0 0.5 1.0
‘l,;"v'

| ---"'W

0.0 0.5 1.0

14

Significant speedup, minimal error

. 4000 A 0.12 A
° Trapequdal method reducgs I B Trapz
integration cost by ~10x, with 2000 B True | 010
only 0.1% error in eigenvalues 3000 - 3
of plasma response matrix S 2500 g 208
'® 5|
. . > = -+ a
e Implemented in PCS, achieves g 2% = 0.06
. - o
calculation times <100 ms ;2 1500 5
. . 1000 A
e Ideal for real time analysis
500 A
o Integrating with Proximity Control to
L O e
steer away from Stablllty boundary 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
o But need faster still for model based Index of eigenvalue Index of eigenvalue

predictive control

R. Conlin / November 2020 / APS-DPP 15

STRIDE GPU for predictive stability analysis

Batched cuBLAS + new Parallel MatMul
integration sche@e Reduction
\
2 \ =l
e GPU implementation under \\ L
development i \
* Projected to achieve <20ms Parallel field 5 —— \ =
calculation time line integration F = =
e Combined with state D o
prediction, hope to predict g5_i 1 oq cuFET + 1 =
instabilities 100s of ms custom kernels //
before they occur 10t 4]
Batched cuBLAS/ & - g N " .
é}*‘ ¢e° <"°® > '-h\o\\ Obq’
custom kernels & & S A S §
-\Qio '\Q’G\O y 6&‘6\ (90\7\\\ QQJ%Q ‘&'Z’Q\e
& ?9&“ & '\\&QO ’\&@"
& o \-}«\QG & oo\&\
® < O&

R. Conlin / November 2020 / APS-DPP 16

Summary

e Autoencoders can learn linear embedding for robust control design

o

o
o

S. Otto, C. Rowley: “Linearly recurrent autoencoder networks for learning dynamics”, SIAM Journal on Applied
Dynamical Systems (2019)

J. Abbate, R. Conlin, E. Kolemen: “Data-Driven Profile Prediction for DIII-D”, Nuclear Fusion (under review)

A. Jalalvand, J. Abbate, R. Conlin, G. Verdoolaege, E. Kolemen (2020), "Real-Time and Adaptive Reservoir

Computing with an Application to Profile Prediction in Fusion Plasma", IEEE Transactions on Neural Networks
and Learning Systems. (Under Review)

e Keras2c allows automatic conversion of neural networks to real time C code

O
O

https://qithub.com/fOuriest/keras2c
R. Conlin, K. Erickson, J. Abbate, E. Kolemen: "Keras2c: A library for converting Keras neural networks to
real-time compatible C", Engineering Applications of Artificial Intelligence (under review)

o STRIDE calculates ideal MHD stability in real time

o

A.S. Glasser, E. Kolemen, A.H. Glasser: “A Riccati solution for the ideal MHD plasma response with applications
to real-time stability control”, Physics of Plasmas (2018)

A.S. Glasser, E. Kolemen: “A robust solution for the resistive MHD toroidal A ' matrix in near real-time”, Physics
of Plasmas (2018)

A.S. Glasser, A.H. Glasser, R. Conlin, E. Kolemen: “An ideal MHD &W stability analysis that bypasses the
Newcomb equation”, Physics of Plasmas (2020)

R. Conlin / November 2020 / APS-DPP 17

https://github.com/f0uriest/keras2c

Koopman operator theory

Consider a nonlinear discrete time system:

Tir1 = (@) (1)

with state x € R™ and continuous map f : R™ — R"

Let g(x) : R™ — R™ be an observable of the system. The collection of all
observables form a linear vector space G.

Define the Koopman operator U as a linear transformation on this vector
space as follows:

Ug(zi) = go f(x:) = g(®t+1) (2)

Where o denotes the composition operator (z o y(x) = z(y(x))). The linearity
follows directly from the linearity of the composition operator:

Ulg1+g2](x) = [g1 +g2]o f(x) = gro f(x)+g20f(x) = Ugi(x)+Uga(x) (3)

R. Conlin / November 2020 / APS-DPP

18

Koopman operator theory

Thus, we have transformed our original nonlinear system x;,, = f(«;) into
a linear system in the observables of x, given by g(x;.1) = Ug(x;). However,
this new linear system is infinite dimensional, due to the infinite dimensionality

of the vector space G.
However, because the Koopman operator is linear, we can seek to find its

eigenvalues \; and eigenfunctions ¢;, which satisfy
Ulg;(x) = Xg;(x) (4)

And assuming that the eigenfunctions span G, we can decompose any observable
as
9(z) = grow() (5)
k

We can define an observable to be the full state g(x) = x, whose Koopman
decomposition is given by

T = Zﬁk@k(w) (6)

R. Conlin / November 2020 / APS-DPP

19

LRAN theory

The evolution of the state is then given by
T =) &i\0;(x0) (7)
J

We can then interpret the autoencoder h as learning the Koopman eigen-
functions ¢;, and the learned matrix A as a low dimensional approximation to
the Koopman operator, with eigenvalues A; and eigenvectors &;

We train the autoencoder to both minimize the traditional residual in @, as
well as the recurrent residual in the latent space z = h(x)

£O) =Y (. — h ' (h(2+,0),0))" + (241 — (A(6)z + B(O)ur))® (8)

t

R. Conlin / November 2020 / APS-DPP

20

| am visiting another poster session and will return at 4:15 EST

R. Conlin / November 2020 / APS-DPP

