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● Machine Learning to predict/control plasma state

○ What should control inputs be to achieve desired state?

● Using machine learning models in real time systems

○ How do we get a neural net onto plasma control system (PCS)?

● Physics based models to determine which states are best

○ Given a controller, which state should we aim for?
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Full state of plasma determined 
by 1D profiles:
● Pressure (P)
● Current (J) 
● Electron temperature and 

density (Te, ne)
● Ion temperature and 

density (Ti, ni) 
● Rotation (𝛺)

Given state (and actuators), can 
we predict how plasma will 
evolve on transport timescales 
(~100-200ms)?

Transport Plasma State
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● Traditional ML*: Learn f, but model 
predictive control with nonlinear model is 
expensive, inefficient.

● Solution: use Linearly Recurrent 
Autoencoder Network (LRAN) to learn 
linear embedding of nonlinear dynamics

● Functions h and h-1 parameterized by 
neural networks

● Learned along with matrices A, B

● Gives linear model for dynamics, so we 
can use robust methods for linear optimal 
control 
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* see:
- Abbate, ZO04.00006 Data-Driven Profile Prediction, 
- Jalalvand, GP19.00024 Hyper-dimensional time-series data 
analysis with reservoir computing networks to predict plasma 
profiles in tokamak

Transport is nonlinear - use ML to get linear model
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● Model trained on experimental data from 
DIII-D 2013-2018

● After model tuning, can get similar 
performance to more advanced models  

● Currently developing finite horizon linear 
optimal controller for tests on DIII-D  
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LRAN: high accuracy, easy robust control design
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● Current method for deploying ML 
models based around mobile + 
web applications

● Generally involve communicating 
with process running on remote 
server

○ Large latency 
○ Non-deterministic behavior
○ Not safe for real-time applications

● Other option: recode entire model 
by hand

○ Time consuming
○ Error prone
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How to deploy machine learning models for control?
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Keras2c: full automated conversion / code generation

Script/Library for converting Keras neural 
nets to C functions

● Designed for simplicity and real time 
applications

● Core functionality only ~1500 lines

● Generates self-contained C function, 
no external dependencies

● Supports full range of operations & 
architectures

● Fully automated conversion & 
testing
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● Example timing shown for neural net 
predicting plasma transport

○ 30 convolutional layers of varying size
○ 2 recurrent LSTM layers
○ Dozens of reshaping/padding/merging 

operations
○ Multi-input/multi-output model with 

branching internal structure
○ Total 45,485 parameters

● Mean time 1.65 ms*
● Worst case jitter 23 μs, rms 3.75 μs

*Also includes time to gather input data from 
other processes and pre-processing
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Real-time applications: DIII-D Plasma Control
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STRIDE: Real Time δW Calculations

● δW < 0 → MHD instability
● Quadratic Lagrangian gives 

Linear Euler-Lagrange 
equation

● Linear E-L can be domain 
decomposed using state 
transition matrices

Easy parallelization → fast (real time) stability calculations
12
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Adaptive multistep integration scales poorly with many threads

● Previous approach used ZVODE 
(adaptive multistep method) to integrate 
on each interval

● Adaptive step size takes extra 
unnecessary steps in stiff regions 

● Multistep method not self starting, needs 
extra function evaluations on each 
interval.

● Adding more intervals to balance 
threads adds 1000s of function 
evaluations

● Compute time ~300 ms at best on 72 
core CPU
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Extreme parallelization - fixed steps, tuned intervals

● Use 1 trapezoidal step per interval with optimized interval 
division

● Binary reduction to combine solutions in ~Log2(N) time

● Know we need to take smaller steps closer to rational 
surfaces

○ Assume step size                     where    is some measure of 
stiffness

○ Fit a function of the form

■ s = index of singularity, 

■ ѱs = location of singularities

■ 𝛼, 𝛽 = coefficients to optimize

14
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Significant speedup, minimal error

● Trapezoidal method reduces 
integration cost by ~10x, with 
only 0.1% error in eigenvalues 
of plasma response matrix

● Implemented in PCS, achieves 
calculation times < 100 ms

● Ideal for real time analysis
○ Integrating with Proximity Control to 

steer away from stability boundary

○ But need faster still for model based 
predictive control
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● GPU implementation under 
development

● Projected to achieve <20ms 
calculation time

● Combined with state 
prediction, hope to predict 
instabilities 100s of ms 
before they occur

Parallel MatMul 
Reduction

Batched cuBLAS + new 
integration scheme

Parallel field 
line integration 

Batched cuFFT + 
custom kernels

Batched cuBLAS + 
custom kernels

STRIDE GPU for predictive stability analysis
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Summary

● Autoencoders can learn linear embedding for robust control design
○ S. Otto, C. Rowley: “Linearly recurrent autoencoder networks for learning dynamics”, SIAM Journal on Applied 

Dynamical Systems (2019)
○ J. Abbate, R. Conlin, E. Kolemen: “Data-Driven Profile Prediction for DIII-D”, Nuclear Fusion (under review)
○ A. Jalalvand, J. Abbate, R. Conlin, G. Verdoolaege, E. Kolemen (2020), "Real-Time and Adaptive Reservoir 

Computing with an Application to Profile Prediction in Fusion Plasma", IEEE Transactions on Neural Networks 
and Learning Systems. (Under Review)

● Keras2c allows automatic conversion of neural networks to real time C code
○ https://github.com/f0uriest/keras2c
○ R. Conlin, K. Erickson, J. Abbate, E. Kolemen: "Keras2c: A library for converting Keras neural networks to 

real-time compatible C", Engineering Applications of Artificial Intelligence (under review)
● STRIDE calculates ideal MHD stability in real time

○ A.S. Glasser, E. Kolemen, A.H. Glasser: “A Riccati solution for the ideal MHD plasma response with applications 
to real-time stability control”, Physics of Plasmas (2018)

○ A.S. Glasser, E. Kolemen: “A robust solution for the resistive MHD toroidal Δ ′ matrix in near real-time”, Physics 
of Plasmas (2018)

○ A.S. Glasser, A.H. Glasser, R. Conlin, E. Kolemen: “An ideal MHD δW stability analysis that bypasses the 
Newcomb equation”, Physics of Plasmas (2020)

https://github.com/f0uriest/keras2c
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Koopman operator theory
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Koopman operator theory
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LRAN theory
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I am visiting another poster session and will return at 4:15 EST


