Physics and Machine Learning Based Approaches to Stability Analysis and Control on DIII-D

by **R. Conlin1,2***

with **J. Abbate^{1,2}, K. Erickson², A. S. Glasser^{1,2}, A. Wu¹ , A. Iqtidar¹ , E. Kolemen1,2**

¹ Princeton University 2 Princeton Plasma Physics Laboratory

Presented remotely at 2020 APS-DPP Meeting November 11th, 2020

Email:

* wconlin@pppl.gov

Mechanical and Aerospace **Engineering** PRINCETON

1

Outline

- Machine Learning to predict/control plasma state
	- What should control inputs be to achieve desired state?
- Using machine learning models in real time systems
	- How do we get a neural net onto plasma control system (PCS)?
- Physics based models to determine which states are best
	- Given a controller, which state should we aim for?

Outline

- Machine Learning to predict/control plasma state
	- What should control inputs be to achieve desired state?
- Using machine learning models in real time systems
	- How do we get a neural net onto plasma control system (PCS)?
- Physics based models to determine which states are best
	- Given a controller, which state should we aim for?

Transport Plasma State

Full state of plasma determined by 1D profiles:

- Pressure (*P*)
- Current (*J*)
- Electron temperature and density (T_e, n_e)
- Ion temperature and density (T_{i}, n_{i})
- Rotation (Ω)

Given state (and actuators), can we predict how plasma will evolve on transport timescales (~100-200ms)?

Transport is nonlinear - use ML to get linear model

^{*} see:

- Abbate, ZO04.00006 Data-Driven Profile Prediction,

- Jalalvand, GP19.00024 Hyper-dimensional time-series data analysis with reservoir computing networks to predict plasma profiles in tokamak

- Traditional ML*: Learn **f,** but model predictive control with nonlinear model is expensive, inefficient.
- Solution: use **Linearly Recurrent Autoencoder Network** (LRAN) to learn linear embedding of nonlinear dynamics
- Functions **h** and **h** -1 parameterized by neural networks
- Learned along with matrices **A**, **B**
- Gives linear model for dynamics, so we can use robust methods for linear optimal control

LRAN: high accuracy, easy robust control design

- Model trained on experimental data from DIII-D 2013-2018
- After model tuning, can get similar performance to more advanced models
- Currently developing finite horizon linear optimal controller for tests on DIII-D

$$
x
$$

\n
$$
x_{t+1} = \mathbf{A}z_t + \mathbf{B}u_t
$$
\n
$$
-\mathbf{K}
$$

Shot# 158920, $t = 3050$ ms

R. Conlin / November 2020 / APS-DPP

Outline

- Machine Learning to predict/control plasma state
	- What should control inputs be to achieve desired state?
- Using machine learning models in real time systems
	- How do we get a neural net onto plasma control system (PCS)?
- Physics based models to determine which states are best
	- Given a controller, which state should we aim for?

How to deploy machine learning models for control?

- Current method for deploying ML models based around mobile + web applications
- Generally involve communicating with process running on remote server
	- Large latency
	- Non-deterministic behavior
	- **○ Not safe for real-time applications**
- Other option: recode entire model by hand
	- Time consuming
	- Error prone

Keras2c: full automated conversion / code generation

Script/Library for converting Keras neural nets to C functions

- Designed for simplicity and real time applications
- Core functionality only \sim 1500 lines
- Generates self-contained C function, no external dependencies
- Supports full range of operations & architectures
- Fully automated conversion & testing

Real-time applications: DIII-D Plasma Control

- Example timing shown for neural net predicting plasma transport
	- 30 convolutional layers of varying size
	- 2 recurrent LSTM layers
	- Dozens of reshaping/padding/merging operations
	- Multi-input/multi-output model with branching internal structure
	- Total 45,485 parameters
- Mean time 1.65 ms^{*}
- Worst case jitter 23 μs, rms 3.75 μs

*Also includes time to gather input data from other processes and pre-processing

Outline

- Machine Learning to predict/control plasma state
	- What should control inputs be to achieve desired state?
- Using machine learning models in real time systems
	- How do we get a neural net onto plasma control system (PCS)?
- Physics based models to determine which states are best
	- Given a controller, which state should we aim for?

STRIDE: Real Time δW Calculations

$$
\delta W = \frac{1}{2} \int_{\Omega} d\mathbf{x} \left[Q^2 + \mathbf{J} \cdot \boldsymbol{\xi} \times \mathbf{Q} + (\boldsymbol{\xi} \cdot \boldsymbol{\nabla} P)(\boldsymbol{\nabla} \cdot \boldsymbol{\xi}) + \gamma P (\boldsymbol{\nabla} \cdot \boldsymbol{\xi})^2 \right]
$$

- \cdot δW < 0 \rightarrow MHD instability
- . Quadratic Lagrangian gives Linear Euler-Lagrange equation
- . Linear F-L can be domain decomposed using state transition matrices

 $\mathbf{x}'(\psi) = \mathbf{L}(\psi)\mathbf{x}(\psi)$

$$
\mathbf{\Phi}'(\psi) = \mathbf{L}(\psi)\mathbf{\Phi}(\psi)
$$

 $\mathbf{x}(\psi_2) = \mathbf{\Phi}(\psi_2, \psi_0) \mathbf{x}(\psi_0) = \mathbf{\Phi}(\psi_2, \psi_1) \mathbf{\Phi}(\psi_1, \psi_0) \mathbf{x}(\psi_0)$

Easy parallelization → fast (real time) stability calculations

R. Conlin / November 2020 / APS-DPP

Adaptive multistep integration scales poorly with many threads

- Previous approach used ZVODE (adaptive multistep method) to integrate on each interval
- Adaptive step size takes extra unnecessary steps in stiff regions
- Multistep method not self starting, needs extra function evaluations on each interval.
- **● Adding more intervals to balance threads adds 1000s of function evaluations**
- Compute time \sim 300 ms at best on 72 core CPU

Extreme parallelization - fixed steps, tuned intervals

- Use 1 trapezoidal step per interval with optimized interval division
- **•** Binary reduction to combine solutions in ν Log₂(N) time
- Know we need to take smaller steps closer to rational surfaces
	- Assume step size $h \sim 1/\kappa$ where κ is some measure of stiffness
	- Fit a function of the form $\kappa = \sum_{n=1}^{\infty} \frac{\alpha}{1 + \beta |\psi \psi_s|}$ $s =$ index of singularity,
		- \bullet ψ_s = location of singularities
		- α , β = coefficients to optimize

R. Conlin / November 2020 / APS-DPP

Significant speedup, minimal error

- Trapezoidal method reduces integration cost by \sim 10x, with only 0.1% error in eigenvalues of plasma response matrix
- Implemented in PCS, achieves **calculation times < 100 ms**
- Ideal for real time analysis
	- Integrating with Proximity Control to steer away from stability boundary
	- But need faster still for model based predictive control

STRIDE GPU for predictive stability analysis

Summary

● Autoencoders can learn linear embedding for robust control design

- S. Otto, C. Rowley: "Linearly recurrent autoencoder networks for learning dynamics", *SIAM Journal on Applied Dynamical Systems* (2019)
- J. Abbate, R. Conlin, E. Kolemen: "Data-Driven Profile Prediction for DIII-D", *Nuclear Fusion* (under review)
- A. Jalalvand, J. Abbate, R. Conlin, G. Verdoolaege, E. Kolemen (2020), "Real-Time and Adaptive Reservoir Computing with an Application to Profile Prediction in Fusion Plasma", *IEEE Transactions on Neural Networks and Learning Systems*. (Under Review)

● Keras2c allows automatic conversion of neural networks to real time C code

- <https://github.com/f0uriest/keras2c>
- R. Conlin, K. Erickson, J. Abbate, E. Kolemen: "Keras2c: A library for converting Keras neural networks to real-time compatible C", *Engineering Applications of Artificial Intelligence* (under review)

● STRIDE calculates ideal MHD stability in real time

- A.S. Glasser, E. Kolemen, A.H. Glasser: "A Riccati solution for the ideal MHD plasma response with applications to real-time stability control", *Physics of Plasmas* (2018)
- A.S. Glasser, E. Kolemen: "A robust solution for the resistive MHD toroidal Δ ′ matrix in near real-time", *Physics of Plasmas* (2018)
- A.S. Glasser, A.H. Glasser, R. Conlin, E. Kolemen: "An ideal MHD δW stability analysis that bypasses the Newcomb equation", *Physics of Plasmas* (2020)

Koopman operator theory

Consider a nonlinear discrete time system:

$$
\boldsymbol{x}_{t+1} = \boldsymbol{f}(\boldsymbol{x}_t) \tag{1}
$$

with state $\boldsymbol{x} \in \mathbb{R}^n$ and continuous map $\boldsymbol{f} : \mathbb{R}^n \to \mathbb{R}^n$

Let $g(x): \mathbb{R}^n \to \mathbb{R}^m$ be an observable of the system. The collection of all observables form a linear vector space \mathcal{G} .

Define the Koopman operator U as a linear transformation on this vector space as follows:

$$
Ug(x_t) = g \circ f(x_t) = g(x_{t+1})
$$
\n(2)

Where \circ denotes the composition operator $(z \circ y(x)) = z(y(x))$. The linearity follows directly from the linearity of the composition operator:

$$
U[g_1+g_2](x) = [g_1+g_2] \circ f(x) = g_1 \circ f(x) + g_2 \circ f(x) = Ug_1(x) + Ug_2(x)
$$
 (3)

Koopman operator theory

Thus, we have transformed our original nonlinear system $x_{t+1} = f(x_t)$ into a linear system in the observables of x, given by $g(x_{t+1}) = Ug(x_t)$. However, this new linear system is infinite dimensional, due to the infinite dimensionality of the vector space \mathcal{G} .

However, because the Koopman operator is linear, we can seek to find its eigenvalues λ_i and eigenfunctions ϕ_i , which satisfy

$$
U^t \phi_j(\boldsymbol{x}) = \lambda_j^t \phi_j(\boldsymbol{x}) \tag{4}
$$

And assuming that the eigenfunctions span \mathcal{G} , we can decompose any observable as

$$
g(x) = \sum_{k} g_k \phi_k(x) \tag{5}
$$

We can define an observable to be the full state $g(x) = x$, whose Koopman decomposition is given by

$$
\boldsymbol{x} = \sum_{j} \boldsymbol{\xi}_{k} \phi_{k}(\boldsymbol{x}) \tag{6}
$$

R. Conlin / November 2020 / APS-DPP

LRAN theory

The evolution of the state is then given by

$$
\boldsymbol{x}_t = \sum_j \boldsymbol{\xi}_j \lambda_j^t \phi_j(\boldsymbol{x}_0) \tag{7}
$$

We can then interpret the autoencoder h as learning the Koopman eigenfunctions ϕ_i , and the learned matrix **A** as a low dimensional approximation to the Koopman operator, with eigenvalues λ_i and eigenvectors ξ_i

We train the autoencoder to both minimize the traditional residual in x , as well as the recurrent residual in the latent space $z = h(x)$

$$
\mathcal{L}(\boldsymbol{\theta}) = \sum_{t} \left(\boldsymbol{x}_t - \boldsymbol{h}^{-1}(\boldsymbol{h}(\boldsymbol{x}_t, \boldsymbol{\theta}), \boldsymbol{\theta}) \right)^2 + \left(\boldsymbol{z}_{t+1} - (\boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{z}_t + \boldsymbol{B}(\boldsymbol{\theta})\boldsymbol{u}_t) \right)^2 \tag{8}
$$

I am visiting another poster session and will return at 4:15 EST

R. Conlin / November 2020 / APS-DPP